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Spherical, Cylindrical and One-Timensional Flows
f Compressible Fluids

Josepn B3, Keller

I. Introduction

Relatively few boundary value problems involving
spherical or cylindrical flows of compressible fluids have
been solved exactly. 1In order to solve mere problems of this
type, varticularly those involving varigble enitropy, we have
investigated the flow differential equations, at first
without regard to initial or boundary conditions. In this
way a class of non-isentropic solutions of the differential
equations, depending upon an arbitrary function, has been
obtained. Then, in the second phase of the investigation,
the arbitrary function is adjusted to satisfy particular
initial or boundary conditions. In this way the free expansic
of a strhere of gas into a vacuum has been treated, as well as
the propagation cf finite and strecng shocks in variable media.
The latter treatment includes Primakoff's point-blast solution
as a snecilal case.

Tne method of procedure is quite simple. In section II
the vroblem is formulated in Lagrangian variables., In
scction I1T a class of solutions is obtained by the method of
separation of variables. In section IV these solutions are
gspecialized to isentropic flow. In section V the scolutions
are anplied to the deiermination of strong shock waves
in variable media. In section VI finite shocks

in variaolie media are considered.
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Formulation

We consider the motion of an inviscid, non-heat-
conducting fluid, obeying the polytropic equation of state.
The one, two and three dimensional cases will be treated

together. In the three cdimensional case y{n,t) represents



Zs

the radius at time t of the¢ particle witan the Lagrangian
coordinate h, which 1s defined by the eqguation
v(n,t)
= n-1 . -
(1) h = - oplr,t) &r R =1,8,%
y(0,t)

In the above equation o(r,t) is the density at time t and
radius r, and n is the dimension, which is 3 in the spherical
case. In the two dimensilonzl case y represents radial
distance from 2n axis, cnd in one dimension y is a cartesian
coordinate.

It is further assumed that all flow variables depend
upon y and t only and that flow occurs only in the y direction.
This is the assumpntion o7 svhericul, eylindrical or nlsnar
symnetry.

From the definition of y, thec perticle veloclty u is

given by

2) W= .

Similarly from {1) thc density p or specific volume ¥ are
given by

(3} t: o-l = vn-l ofe

Tecause of our assumptions concerning inviscidity and
non-conductiosn, the entropy s of a narticle 1s independent

of time (at lzast between successive shocks). Thus we nave
(i) s = s(h) .

The function s(h; is given by initial data or by shock
conditions, and is assumcd to be known.,

The pressure » is glven oy the equation of state

i
‘g
i

n(p,s) = gilT,s) .

For a polytropic gas or liguad



(6) g(E,s) = g, + ALY .

The functiocn A{s), the adiabatic cxponent y, and the internal
presgsure g are assumed to be known.
In terms cf the above defined quantities, the eguation

of motion is

n-1

; -1
(7) Voo = T Loy THmptem] -

For a polytropic gas or liguid this becomes, using (6),

n-1 -Y-l( n-1 1 n-1

n- . - -1
A yh)h y 'ﬂh(y Y y?

(8) ¥y = vals) by ) 'Y .
Fquation {£) is a second order partial differential equation
for y(h,t). The cocfficiecnt A 1Is assumed to be a known
functiorn of s, and by (i), of h.

The problem we coasider is that of finding sclutions of
(8). PFrom a particular solution, the¢ flow variables can be

found by using (2}, {3), (4) and {3).

TIT. Product Solutions
Let us seck product seclutions of {8) of the form

(9) gl v = lajjit) -

Inserting (9) into (8), andé separating variabies we obtain

(10} 3* -kjn(l'v)"l = @
(11) _A{(fn-lfw)-y]vfn—2 -A'(fn'lf')'Y P2 X .

In these equations A 1s an arbitrary separation parameter and
vrimerc reovresent derivatives wiith respect to t in {10) and
with respect to n in (11).

To solve {19) we multiniy by j' and intcgrate, obtaining

Ty o o T . |
(12 () "nT%-?,'Jn‘ Vi o=3a (y # 1)



(13) %(5’) -2 lo: § = %za fng 1= 1 3

Here a 1s an integration constant. Thus, unless j is constant,
which is possible only if A = 0 or j = O, we have the solution

X -1/2
(1) ‘f [HT%§VT jn(l'Y)-+a] ’ dj =t (y # 1)
J
(15) [2n log j +a]'l/2 aj = t (y = 1) .

The integration constart in (1)), (15) has been set equal to
zoreo withov' Trnge of geouerallty since it merely shifts the
origin of time,

To solve {11) we differentiate out and obtzain

(16) YA{!'“fn-l+(n-1)f_‘n_1(f')2](fn-lf| -y-1

!
/

n-2

T okt Al ek B LS G

We now consider thc inverse function h = h(f) and denote

h'{f) by q(f). Then (16} becomes

{(17) YA[-q'q'Bfn'14-(n-l}fn’zq’2][fn'lq’l]'Y‘l =2

= fn-2{fn--1q-1}mY A'(n) = A .

W

shall first treat the case y # 1 by introducing z(f) and

-~ (0]

3

£) defined by
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“ith theese definitions, {17) becomes (prime denoting
differentiation with respect to 1)

(1) z'+z{-(n-1)(y-l)f’-"'+1-;-i (log B)')

i K(;ﬁ;l) f(n-l)(Y-1)+1 = 3



=1
ia ft-(n‘l)(Y—l)B Y

An integrating factor of (19) and the

solution is (with G a constant)

1-y £ o
(200 m= DT (g Al) (g Y )
i) . Y
Thus we have q from (18) and {20), and tinally since h' = g,
(21) n = j‘ fn'lB'l/Y‘G--ﬁi$:li‘J\ eR Y df] ar + E .
5

—a
]
]
]
®
!

% is an integration constant.

Renatlon {(21) gives £{h) implicitly, and thus »rovides
a solution of (11) for ¥ ¥ 1. The sclution may bc written
more simply by defining F(f} by

i 4 ‘lv-l
U opas -, H
(22) M) = |6 = ALL?lLLf 8 1/y dﬁj :
ke

If A # O this can be solved for B(f) and yields

(23) Br) = (a8} ey Y p

The solution Jcr the {low variables can now be computed from
(2)-(5), (), (21L), (22). We have for y # 1 and \ ¥ O,

—-]
remembering that £ = yj = from (9),

(2L u(y,t) = yj';t
{ %) Ty,t) = AyiTiF (v
(26) p(y,t) = g+ 3 Y Fiyi™h .

Equations (2L)-(26) give the flow quantities. In fact, these

cexpressions yield a solution of the Eulerian equations of

motion For sn arbitrary fuaction I provided that j(t) is given

by (14}, This is the first main result of this paver. It

iz to be noted that in tihcse seclutions, u is prosportional to y.
In the excluded case y # 1, A = 0 we have instead of

{(2h)-{26) Fzem (2)=43)i, {9]s; f2d)



(27) w(y,t) = yi's"t = yt~1

1
(28) iy, t) = Py el Y = oyt
(29) p(y,t) = g, + J7°F GTZ? = g, + AT,

The new arbitrary function b and arbitrary constant £ have
been introduced and the expressions simplified by using (14),

which gives
(30) ity = at2
The corresponding solutions when v = 1 are obtaincd from
(17) by introducing 3(f) as in (18), after which (17} becomes
1,8

1 -1 - Af
(31) g g =(a=lif " #E= == U,

The solution of (31} ie
e g
(32) gl(f) = fn'ls'l(f) exp\y -xfB-l(f)df .

-Thus

by kY

.
(33) h(f) f [rn‘ls”l(f) expf -xfB'l(f)dedr + E

Equation (23) yields the solution implicitly. Aagsin

we dei’ine
( 34} weE) = expljf -XfB-l(f)df "

Then if X # 0 we have

(23) 3(f) = -afF(F' )"t .,

The solution for the flow variables, if vy = 1 and A # 0, is
again given by (24)-{26) with v = 1 and j(t) given by (15).
Similarly for v = 1 and A = C the solution is given by

(27)-(29) with ¥ = 1, G = 1 and j(t) given by (30).



Equations (2L)-(26) and (27)-(29) represent non-
tsentropic solutions of the flow equations depending uvpon an
arbltrary function. In order tc construct these solutions
explicitly one need merely evaluate the integrals in (1)
or (15). Some speclal cases of these integrals yield rcsults
which are liSted below for later use.

2
(36) j(t)=={r__§§?7]1/2(§$x-l)+2)g}HT?:TT¢?

i o et
if y#£1, a= G, %#-1

1/2
+ t 5
(37) J(t)=e 12 y#1, a= 0, Bgd) -

IVv. Isentropic Case

The above solution can be specialized to the isentropic
case by setting 4 = B = constant. Then from (22) and (34) we
cbtain

: ]—IT

[. —i-{-7l -1 4

G - 1
2yB ¥ o= it

(39) F(f) =
(Lho) PF(Ff)} = exp :%%i y =1 .

Thus the solutions given by (24)-(26) become, for y # 1 and
A= D0

e
(L2) Ty,t) = jnBI/Y[G _ A v-}) yzj-a]Y_
2yB Y
: o
(43) »ly,t) = g + 7Y [G _ A -13' yzj-c]y_l .
2yBT =

In these solutions B and G are constants and j is given by (1hL).
For A = 0, and all ¥y thc solution (27)-(29) applies with b
constant.
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For y.= 1 and all A, (41) is unchanged, but the other
equations become

-2 2

jnB exp :Alzﬁx"

-2.2
(45) »p(y,t) = go4-j'n exp 2\-Jj--z}-a-x--

(L) 2y,t)

Here B is a constant and j s given by (15).

As an exampls of these isentropic solutions, let j{t)
be given by (36) and assume G = 0 in (42), (43). Then (41)-
(L3) yield the power solutions (if v # 1, Qi%fil £ =1)

(46) wuly,t) = ¢ Yf . s
R -2
(L7) Ty,t) = [%?(2§1:1)+2)&]??I (yt'l)?:T

" . e
y3,n{y=1j+2,2|1-v -1, y~1
(L8) ply,s) = go4-8!j n('J%frx"-—4 J (yt-) " .

V. Applicaticn: Strong Shocks In Variable Media

Let us supnose that a shock given Dy the equation
y = RB(t) moves into a varisble medium of density po(y),
pressure po(y) and velocity zero. The pressure p, velocity u
and density p just behind the shock are related to the
correstonding quantities in front of it by the shock
concditions. These condicions are

(y+l)p+ (v-1lp

i L. = _ y+1l e
Sl Py (y=1lip+(y+l)p, ! (y # 1)
2(p -n ) 2 /2

(':O) n = = ' --—"9~-'—~'—~‘—1—7§ = [TYI%‘)‘-()—OJ

1290[(Y+1)p-+(7~1)p0}} ‘

C(vtl) g
(51) o [(r+l)o+ (v l)po]l/2:% [L;+1)p]l/2

2p 20, .

O



9.

The second cxpressions on the right apply to a strong shock,
for which p >> Py

We shall now assumc that the flow benind the shock is
a "product" =olution given by (24)-(26), and that the shock
is strong. We wish to determine the functions F(yj'l), R &),
po(y) and po(y) for wnich such a solution is possible. To
this cnd, we insert (24)-(26) into (49)-(51) and obtain

wm! =1
1e2) F (Rl ) = _+1
T awi™ e () 1

(53) Ry . | 20t 23RS
: il R £ o3k
Y A = \ 2
o g = [(7+1’580+ Lt A
) o L Zpo(a) J ]

( BE) §.= iﬁ%&l %r .
Thus

+1
(56) R(t) = Ro{jr.t)}x"‘— :

Inscrting (56) into (53) and making use of (12),

satisfied by ji{t), we Tind

L 2
(57) F(x} = Bt o (XY’l w1
-2ny (2n+2)y-2 20y

Thus R is ~ctermined, F is rclated to p_, and (53), (54L) are
satisfied, although 90, T, and A «re still arbitrary. We now
insert (56), (57) into (52) to dctermine F. We obtain, if

go = O’



(58) F(X) = Foxn ['T(-F%)- + DX

2RR2n 2n]-1/2
L

From (57) and (58) we then find

Zn%
_ 00 o v+ v+
(59) o (R) = ey Gy FDRe R
(n-2)y-3n+2 2(n-2)y-bn+l
g T g (1 {y=-T) .
o

In (58) and {59) i is an arbitrary constant. The corres-
ronding results with Eo # O are somewhat more comvlicated:
We have thus obtained a solution with a strong shock

moving into a variable medium at rest, with density given by

(59). The constants FO, Rar A and D are arbitrary in this
equation, but only two esscntial combinations of these

constants occur. The shock curve is given by (56), and j(t)
by (14). The flow is given by (24)-{26) with F(x) given by

4]

(58}, The flow might be produccd by a piston following one
of the particle raths

(6C) Blel = X JEl .

The solution was deduced for v ¥ f1 and A ¥ C.

As ap example of these solutions, 1let us suppose that

pO{R) = constant. From {59) we find that this requires
= 0 - 3n-2
(61) D=0 , Y"_ﬁ.:i

The last conditicn can »o fulfilled only for n = 3, in which

casc ¥y = 7. (n =1 leads to v = -1, which was excluded in
thce derivation, and n = 2 yislds no vaiue of v.) In this

case we have from (1), {(53)

s 11/10 EER: Pl
(62) i & [27‘—*- | ;o F(x) = x0 =20 :
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The solution computcd by using (62) in (2L)-(26) (with A < 0)
is exactly the point blast solution of Tayler's type first

found by H. Primakoff, <yl

VI. Application: Finite Shocks In Variable Media
We may apply the above method to dectermine finite

shocks in variable media. Then we must satisfy the exact
shock conditions (4G)-(51) rather than the strong shock
conditions. Inserting {(2L)-(26) into (49)-(51) yields with

s = @
=0
(63) F'(X) : ('Y+1)j-nYF+ (Y'l)po x = Fj-l
Caw™ o, (o (v-1)§TYE
+ "N Y
; i iPep

(6l) Rj §°T = =

Py -ny 1/2

(1) 37F+ (v-1)p,]
(65) R o= = [(p) 3. (y-10p, 112

Equations (63)-(65) are a se¢t of two first order
ordinary differential cquations and one algebralc equasion
for the determination of the four functions F(x), R{t), po(R)
and po(R). Bquation (1) gives j(t). This system is evidently
underdctermined and will nave infinitely meny solutions. In
thes strong shocl: case, however, Ps did not occur and thus the
system was determined.

To solve the above system we could impose some rclation
between py and py and climinate both these functions by
means of that rolation 2nd {(&L). A pair of simultancous
first order equetions for F{(Xx) and R(t) would rcsult. Howcver
these cquations can be trecated senarately sinen., from (6l)

t

und {65) we have by climina
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. _ F 2 _ _111/2
(66) ® = LEry'yt o+ | Lgplo(ry'y 124 yp 051 :

This 1s an equation for R(t) if the ratio pop;1 is given as
& function of R. (Equation (66) alsc holds when g # 0.)
After solving this, {63} can be solved for F, and then 138
and p, can be obtalned.

We will now investipate the shock curve R(t) given by
{66), in the special case in which j(t) is given by (36) with
C = 0 and ypopgl = ci is constant. The latter assumption
means the temperature ahead of the shock is constant. Making

use of (36), (66) becomes

[ (y+1)° ,
kin(y-1)+2]°

’ i I"‘l - -1
(O?) R = 2[n(‘Y"l)+2T ot ¥

(Rt
(Rt —) + c,

2 2]1/2

= in (67) we obtain an

equation for U in which the variables separate. One solution

Tf we now introduce "(t) = Rt~

is the constant solution

(63) U=t oo (e

In this case, which 1s physically possivble only when
41 . : .
HT:%7%73 < 1, the shock curve is the straight line
¥

4 - - + i «+1 -;/2
(67) R Jt & Co\.L m) t .

When 71 does not have the value given by (68), the

equation for U yields

U(t)
v+l =
(7¢) j. {(ﬁmm - 10
bii
o)

N [ (Y+1)2 > 2'{1/21 -1
"{2n(y-1)+4]

Tntegrating (70) yields
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l-a __:l_ ___l__
2 _1 +ao + o -
& sin g)a_a 1 (}os g)‘“ el .

(71) bt =% a+(a-1l)cos ©

1l aU ar+1

Here 6 = cot~ T35 &S §HT¢:TT:E and b is a constant. Thus we
have ¢

s
(72) q_—'ﬂ't:ﬁ'bt cot © .

Since bt is given in terms of € by (71), R(t) is given

rarame tricaily in terms of 6. A graph of 59}? versus bt is
o}
given in Figure 1 for n = 3 and y = 1.4, which represents a

spherical shock in ailr. When the minus sign is chosen in
(67)-(71) the same curves zre obtained as with the plus sign,
provided t is replaced by minus t,

or small values of t we have
(73) R ~~ Kt

where K is a constant. For ¥y = 7 and n = 3 we find a = % and
thus R ~—t2/5, which is the behavior of Primakoff's point
blsst solution for small t. For lzrge t, R behaves linearly
in t, as in (69).

2

To dotermine B and T, we nhave from (465) and the condition
-1 2 .
YPoPy T Cyo
2p ﬁz -{y-1)p 2yp
(7h) P = —= : 2 = B_#lY o s 5 909
L =N - 2 T ¥+l FovY .
(y+1) Y (y+1)c] Y

Thus, if dot denotes time derivative and prime denotes

derivative of a function with respect te its argument, we have

(75) F = —SX(p!d3 5" 4+ 2p RHIMY + nyp #2 5P
(v+l)eg
- LpgRa® + nyp, 57V
RO | -
=F (R§" -R§"<3") .
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(76) [“—Lz (p R3j Y+ 2p RHJ Y 4 nyp Raan 15
(y+1l)c

- J 1
-JYf;i-(p 1Y + nyp 57T

e

-1
i SO e ]
[—m“ Lepoeof(Ry™t- r; j’)]
»

R B |
- 2YC;232{Y+1*'\Y 1)2YR (w;}) } .
(y+l)c Y

Upon introducing éo = péﬁ, the above equation can be integrated
vielding pC{R(t)] as a function of t. To obtain pO(R), we

must insert t = t(R) from (71), (72) into this result. Then
when po[R(t)] is knewn, F can be found from (74h). These

calculations will not be carried cut here.

VIT. PFree Expansion and Cther Problems

Tn this sectior some flows describasd by the preceding
"product" solutions will be discussed. First, let us consider
the flow given by (L41)-(43) with go 0. This describes the
isentropic flow of a gas. TIf j'(O) 0, it starts from rest.

]

i the constant G is chosen so that p Offor some value of

I
yj-l, then p remains zero for this value of yjfl, which
therefore represents a "free" surface of the gas. Thus the
flow represents the free expansion of an isentropic gas into
vacuum. The equation of the free surface is y = 7%%7 P o
wnere I represents the location of the frec surfgce at t = 0.
In a similar way (24)-{26) may represcnt the frece expansion
into vacuoum of 2 gas with initielly varlable entrory, provided

-l\:

B = 0 and F(yj vanishes for one value of its argument.
For certain cholces of j(t). this solution can also represent
the collapse or expansion 2f a hole, or the initizl
contraction of a sphere of ges toward the origin duc to an
initial inward motion, followed by momentary rest and
subsequent expansion. When g, i1s not zecro, similar motions

of a4 licuid are dsscribed.
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¥TIII. Other Sclutions
Tn the precedins secctions product solutions of (3)
were considered. In thils seetion twe other ¥inds of solutions

N
o

wiil be examined. Flrst, let s assume that
{77) ¥y = f{at + 8h) .

Hers ¢ and B are consiznts. We find for the fliow quantities

(?8) u = yt = uj." = cf‘[ f-l(y)]
(79) T= p-l = Sﬁ-l,n- 12

-
(30) ;D = ApT = é{a;ﬁ‘lyc-nu-l)y "

Fx‘n
| )
M
N
&)
[

Yc see that the fiow qu=nt independent of £, or in

other words, that a solution of the form (77) rields steady

181 ¢°F = ya(er® i) TV a2 ﬁfn—1-+ﬁh artliy et |

Since T is a function of ¢t +8h and t doesn't appear in (31),

h cannot avpear cither. Thus A is constant and Ah = 0. Xow

if x denotes the aregvment of £, and if we consider the inverse
unction x{f}, we cbtain from {51} the following ecuation

q{f) = x(f)

1

=3 . _(ﬁfn-L_-l‘-v-- -Bfn- _n-2q—2)ﬂrn- 1

o 2
{32} -¢“qq = yA G ¢ ° & ’-+ﬁ(n—1)1

Tais equation is ezact zngd yields upon integration

s
{i-vy}{n-1) y-1 . 1 -2 . ik
(83) i WHA Dyl 1l 2 _p, v=MB | gy
¢ {y-1)
{3l 5~ -2—+& 1 = {n-1)zf =
{B5:) - q A log q = {r-1}2f +D # y=1 .

Zare D is 3 constant.
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1

Proa {78) zné the factz that £ = q°, £ = y, we have

C

(,.5) w :m -

Thus the stezady solutions are cbtzineé from the algebralc
cguation (83) or (84).

4 more interesting type of solution is given by
(86) ¥ = t2o(E(n}e) .

Yere z is a constant, and [,K are functions to bo determined.
Thesz sclutions sre like the type considered by Guderly,
Taylor, von Neumann z2nd Calkin and Courant and Friedrichs.

r
Pty R et (n—l)ﬁzfztf“'z]

=y

+'éhta{n‘1) n-1[££n+1fn—1g:]'Y
Tn order that h occur in this eguation only in the combination

x = X{h}t, we find the Tollowing expressions Tor X(h) and A(h)

. Du » fo L TY[Y e

(33} f(z-1)af + 2oxf+ x°f = xSpt® - vy
i if | (n-1)xf . i
ixle + _;H;( f’ )+ 5;7-1)-rc-+lj =
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To reduce (59) to a first order equation, we follow

von Neumann and Calkin, by letting 6 = (a+y)[2+n(y—1)]-l and

Taen (897) bzcomes

, : . d = 4 -
{71) (a-1l)aF+2a(gg +0)7F+ (g5 +6-1)(g5+0)F
d d
" sl | -Y Y{g= +06-1)(5=+ 0)F
= geamliL ()L(£L~+6)F] Tlye + —22 o
= (et B)E
ds E
;!
v(n-1)(=—+&}7 7
AT ;S + ey—e4—c+JJ :
if we now let g = (é%-Fé)F we oobtain a first order

equation for g in terms of F.
" 1)(1-v) 1]
(92} |1- yoFl D =¥ =yl g S om)g

A3 tR-+1 <« =
= F(n 1l Yq YD[ye+y(n-1)qF 1+eY+a+1-e]-(a~1)aF—2aq .

Qrecial cases of this equation have been studied by
von XNsumann and Calkin.
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